Raybet比分 提供学术活动、国际课程、科研项目一站式留学背景提升服务!
400 888 0080
首页
雷竞技手机版官方app下载
青少年国际竞赛汇总
CogAT认知能力测试
国际课程
A-Level课程辅导
IB课程辅导
AP课程辅导
IGCSE课程辅导
美高课程辅导
美高学分项目
国际竞赛
竞赛真题资料
app雷竞技
商科国际竞赛
STEM科创竞赛
文社科国际竞赛
丘成桐中学生科学奖
标化考试
牛剑G5笔试辅导
美国SAT考试
美国TOEFL考试
雅思IELTS考试
美国SSAT考试
雷竞技ray官网下载
学校动态
赛事动态
课程动态
baybet雷竞技
学员奖项
2024-2025年度奖项
2022-2023年度奖项
2020-2021年度奖项
Raybet比分 导师
加入我们
bet999.top雷竞技
Home
»
国际课程
»
IB课程
»
Details
IB DP Maths: AA SL复习笔记3.6.4 Linear Trigonometric Equations
Category:
IB课程
,
教材笔记
,
福利干货
Date: 2022年7月18日 下午12:26
Trigonometric Equations: sinx = k
How are trigonometric equations solved?
Trigonometric equations can have an infinite number of solutions
For an equation in sin or cos you can add 360° or 2π to each solution to find more solutions
For an equation in tan you can add 180° or π to each solution
When solving a trigonometric equation you will be given a range of values within which you should find all the values
Solving the equation normally and using the inverse function on your calculator or your knowledge of
exact values
will give you the
primary value
The
secondary values
can be found with the help of:
The
unit circle
The
graphs of trigonometric functions
How are trigonometric equations of the form sin x = k solved?
It is a good idea to sketch the graph of the trigonometric function first
Use the given range of values as the domain for your graph
The intersections of the graph of the function and the line y = k will show you
The location of the solutions
The number of solutions
You will be able to use the symmetry properties of the graph to find all secondary values within the given range of values
The method for finding secondary values are:
For the equation sin x = k the primary value is x
1
= sin
-1
k
A secondary value is x
2
= 180° - sin
-1
k
Then all values within the range can be found using x
1
± 360n and
Exam Tip
If you are using your G
DC
it will only give you the principal value and you need to find all other solutions for the given interval
Sketch out the CAST diagram and the trig graphs on your exam paper to refer back to as many times as you need to
Worked Example
Trigonometric Equations: sin(ax + b) = k
How can I solve equations with transformations of trig functions?
Trigonometric equations in the form sin(
ax + b
) can be solved in more than one way
The easiest method is to consider the transformation of the angle as a substitution
For example let
u
=
ax
+
b
Transform the given interval for the solutions in the same way as the angle
For example if the given interval is 0° ≤ x ≤ 360° the new interval will be
(
a
(0°) +
b
) ≤
u ≤
(
a
(360°) +
b
)
Solve the function to find the primary value for
u
Use either the unit circle or sketch the graph to find all the other solutions in the range for
u
Undo the substitution to convert all of the solutions back into the corresponding solutions for
x
Another method would be to sketch the transformation of the function
If you use this method then you will not need to use a substitution for the range of values
Exam Tip
If you transform the interval, remember to convert the found angles back to the final values at the end!
If you are using your GDC it will only give you the principal value and you need to find all other solutions for the given interval
Sketch out the CAST diagram and the trig graphs on your exam paper to refer back to as many times as you need to
Worked Example
转载自savemyexams
Previous post: AQA A Level Maths: Mechanics复习笔记2.4.1 Using Calculus in 2D
Next post: IB DP Maths: AA SL复习笔记3.6.5 Quadratic Trigonometric Equations
国际竞赛真题资料-点击免费领取!
美高学分项目重磅来袭!立即了解
2025欧几里得数学竞赛报名开启!
在线登记
最新发布
加拿大发布新学签PAL政策!留学党必看!附加拿大留学背景提升资料领取!
普通家庭出国留学太贵?这5个高性价比国家必须了解!附留学背景提升资料领取!
留学混申指南!热门组合全方位解析!附留学背景提升领取领取!
留学是镀金还是烧钱?这届年轻人真的想清楚了吗?附留学背景提升资料领取!
澳洲留学专业怎么选?一个小细节竟能改变未来走向!附澳洲留学背景提升资料领取!
2025年AMC8真题难度分析!今年AMC8有哪些变化?附2025年AMC8真题及视频解析预约领取!
2025年AMC8竞赛难度分析!赛后如何规划?附2025年AMC8真题答案+视频解析预约领取!
2025年AMC8真题及答案解析!AMC8预测分数线!附AMC8&AMC10备考资料领取!
热门标签
AMC
AMC10
AMC8
AP
物理碗
BBO
A-Level
欧几里得数学竞赛
Physics Bowl
袋鼠数学竞赛
USABO
John Locke
USACO
AMC12
AIME
IB
PhysicsBowl
NEC
BPhO
丘成桐中学科学奖
UKChO
欧几里得
HiMCM美国高中数学建模竞赛
SIC
Euclid
Raybet比分 课程体验,退费流程快速投诉邮箱: yuxi@linstitute.net
沪ICP备2023009024号-1
国际竞赛
了解背提项目
国际课程
商务合作
Go to top
map