年份 | 2018 |
学科 | 机器人与智能机器 Robotics and Intelligent Machines |
国家/州 | United States of America |
Context Aware Medical Image Super Resolution Using Convolutional Neural Networks
In recent years, the classical computer vision problem of super-resolution has been approached with deep learning technologies, e.g., convolutional neural networks (CNNs). These new techniques such as SRCNN have vastly surpassed traditional example-based methods such as sparse-coding. High resolution medical images significantly improve the performance of detection, segmentation, and diagnosis of abnormalities. Unfortunately, the quality of medical images is critically dependent on both practical and physical limitations. First, the quality of imaging is directly proportional to the radiative dosage received by the patient. Furthermore, the extended time in cramped machines leaves the patient prone to anxiety, which may result in motion artifacts. Finally, high-powered machines are necessary to produce high-resolution scans, but they are very expensive.
We propose a novel context-aware CNN architecture, C-SRCNN, as a superior solution to super-resolution, particularly regarding medical imaging. Our novel model employs a multi-channel input into a deep CNN to learn an end-to-end mapping from low-resolution to high-resolution images. Unlike previous techniques, our model is context-aware, having the ability to utilize the surrounding patches of an input image patch for increased performance. The addition of contextual information is apt for medical imaging due to self-similarity between anatomical structures and allows our model to train with more information on a deep and wider network. The model is built using the modern deep learning framework of Tensorflow and Python. Our model has clearly shown superior performance compared to existing work on benchmark datasets as well as on medical images in similar experimental conditions.
高中生科研 英特尔 Intel ISEF
资讯 · 课程 · 全程指导
请扫码添加微信好友
英特尔国际科学与工程大奖赛,简称 "ISEF",由美国 Society for Science and the Public(科学和公共服务协会)主办,英特尔公司冠名赞助,是全球规模最大、等级最高的中学生的科研科创赛事。ISEF 的学术活动学科包括了所有数学、自然科学、工程的全部领域和部分社会科学。ISEF 素有全球青少年科学学术活动的“世界杯”之美誉,旨在鼓励学生团队协作,开拓创新,长期专一深入地研究自己感兴趣的课题。
>>> 实用链接汇总 <<<
· 数学 · 物理 · 化学 · 生物 · 计算机 · 工程 ·
Studies in which the use of machine intelligence is paramount to reducing the reliance on human intervention.
Biomechanics (BIE): Studies and apparatus which mimic the role of mechanics in biological systems.
Cognitive Systems (COG): Studies/apparatus that operate similarly to the ways humans think and process information. Systems that provide for increased interaction of people and machines to more naturally extend and magnify human expertise, activity, and cognition.
Control Theory (CON): Studies that explore the behavior of dynamical systems with inputs, and how their behavior is modified by feedback. This includes new theoretical results and the applications of new and established control methods, system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation.
Machine Learning (MAC): Construction and/or study of algorithms that can learn from data.
Robot Kinematics (KIN): The study of movement in robotic systems.
Other (OTH): Studies that cannot be assigned to one of the above subcategories. If the project involves multiple subcategories, the principal subcategory should be chosen instead of Other.
Raybet比分 课程体验,退费流程快速投诉邮箱: yuxi@linstitute.net 沪ICP备2023009024号-1